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Abstract: The holographic duality can be extended to include quantum theories with

the broken coordinate invariance leading to the appearance of the gravitational anomalies.

On the gravity side one adds the gravitational Chern-Simons term to the bulk action

which is gauge invariant only up to the boundary terms. We analyze in detail how the

gravitational anomalies originate from the modified Einstein equations in the bulk. As a

side observation, we find that the gravitational Chern-Simons functional has the interesting

conformal properties. It is invariant under the conformal transformations. Moreover, its

metric variation produces a conformal tensor which is a generalization of the Cotton tensor

to dimension d+1 = 4k−1, k ∈ Z. We calculate the modification of the holographic stress-

energy tensor that is due to the Chern-Simons term and use the bulk Einstein equations to

find its divergence and thus reproduce the gravitational anomaly. The explicit calculation

of the anomaly is carried out in dimensions d = 2 and d = 6. The result of the holographic

calculation is compared with that of the descent method and an agreement is found. The

gravitational Chern-Simons term originates by the Kaluza-Klein mechanism from a one-

loop modification of M-theory action. This modification is discussed in the context of the

gravitational anomaly in the six-dimensional (2, 0) theory. The agreement with the earlier

conjectured anomaly is found.
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1. Introduction

Dualities play an important role in the theoretical concepts of modern physics. In partic-

ular, they help to understand the behavior of certain systems at the strong coupling by

relating it to the behavior in the weak coupling regime. The AdS/CFT correspondence [1 –

3] (for review see [4] and more recent [5]) is the duality of this sort. Quite remarkably,

it relates not only the different regimes but also apparently different theories. On one

side of the duality one has superstring theory or M-theory, semiclassically described by

11-dimensional supergravity, on the product of AdSd+1 and a compact manifold. On the

other side it is the large N quantum strongly interacting conformal theory living on the

conformal boundary of the Anti-de Sitter space. The duality works both ways. It can

be used to understand the strongly coupled quantum system in terms of the semiclassical

gravitational physics in the bulk. On the other hand, the wisdom gained in the long-time

study of the quantum non-gravitational models can be directed to solving the long-standing

puzzles of the semiclassically quantized gravity. Among such puzzles one finds the problem

of the black hole entropy and the unitarity problem.

The duality in question has the interesting geometric aspects. As is known since the

earlier works [6] and [7], there is conformal structure associated with infinity of anti-de

Sitter space. Namely, one finds that the asymptotic symmetries which preserve the AdS

structure also generate the conformal transformations on the boundary at infinity. On

the other hand, the boundary metric serves as the Dirichlet data for the boundary value

problem associated with the bulk Einstein equations. Solution to this problem is a bulk

metric determined by the boundary data. This is one of the reasons why this duality is

associated with holography [8, 9]. The latter states, quite generally, that the fundamental
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degrees of freedom are that of the boundary and predicts the possibility to project the bulk

physics to the boundary. In the Maldacena’s picture the semiclassical gravitational action

in the bulk becomes the quantum generating functional for the theory on the boundary.

In particular, its variation with respect to the boundary metric (which is considered as the

source for the dual stress tensor) produces the n-point correlation functions of the stress-

energy tensor in the boundary theory. The one-point function determines, for instance,

the conformal anomaly in the boundary theory. Thus, at least in principle, the classical

geometry of an asymptotically AdS space provides us with a complete solution to the

quantum dual theory. The bulk action has infra-red divergences since it involves the

integration over an infinite volume. These are the UV divergences on the boundary theory

side. Thus, for this procedure to work the action should be properly regularized by adding

the suitable counterterms. These and other questions were actively studied in the literature,

see [10]–[24]. The mathematical side of the story was reviewed in [25].

This line of research turned recently to a new interesting direction related to the

possibility to understand holographically the gravitational anomalies which may arise in

the dual theory [26, 27]. Indeed, the dual theory is generically chiral. The quantization

of such a theory may break the coordinate invariance and lead to the anomalies. These

anomalies are well studied [28, 29] and are known to appear in dimension d = 4k−2, k ∈ Z.

In two dimensions they arise in a theory in which the left and right central charges are not

equal. In six dimensions the gravitational anomaly arises, in particular, in the (2,0) theory.

In the weak coupling regime this theory is described by certain tensor multiplet theory

while in the other regime the strongly interacting (2, 0) theory describes N coincident M5

branes. Holographically, the gravitational anomaly originates from the gravitational Chern-

Simons term1 which can be added to the gravitational bulk action. This term is not gauge

invariant, the non-invariance resides on the boundary that is the source for the anomaly in

the boundary theory. In fact, this mechanism is similar to the known [3] holographic origin

of the gauge field anomaly that relates it to the appearance of the gauge field Chern-Simons

action in the bulk. In this case the Chern-Simons term is related by supersymmetry to

the Einstein-Hilbert action and, thus, appears in the leading order in N . On the other

hand, the gravitational Chern-Simons term may originate by Kaluza-Klein mechanism

from a one-loop modification of the M-theory action [30]. Thus, the gravitational anomaly

appears in the subleading order in N . It should be said that the quantum anomalies are

important, and sometimes the only one available, source of information about the strongly

coupled theory. That is why they should be paid our special attention.

In this paper we give an exhaustive analysis of the holographic gravitational anomaly.

Since there is no literature on the gravitational Chern-Simons terms beyond 3 dimensions

we start with a detail study of their general properties. In particular, we observe that these

are conformally invariant functionals. The field equations which follow from the Chern-

1By the gravitational CS term we mean the term for the Lorentz group SO(d + 1) defined with respect

to the spin connection which is on the other hand is completely defined in terms of the vielbein. This

is different from the Chern-Simons term for the AdS group SO(d + 1, 1) considered in the context of

AdS/CFT correspondence in [23]. The CS term in this case is polynomial in curvature and does not lead

to the appearance of the gravitational anomalies in the boundary theory.
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Simons action are, thus, traceless. This is not all, however, to the conformal properties.

The metric variation of the Chern-Simons term results in a conformal tensor. This means

that under the conformal transformations it rescales by a scalar factor. The conformal

tensors which we have found exist in any dimension d+1 = 4k−1, k ∈ Z and are different

from the known Weyl tensors. Since conformal tensors play an important and special role

both in physics and mathematics it would be interesting to see if the tensors we have

discovered have their place in the available list of conformal tensors.

The modified Einstein equations in the bulk are then subject to the Dirichlet problem.

We fix the boundary metric and solve the equations by doing the Fefferman-Graham expan-

sion for the bulk metric. The full analysis of the problem is rather complicated. However,

in order to gain information about the divergence of the dual stress tensor we have to look

at certain (dependent on the boundary dimension d) order in the expansion of (r, i) compo-

nent of the Einstein equations. This way we calculate the gravitational anomaly in d = 2

and d = 6. The holographic stress-energy tensor is defined conventionally as a variation of

the gravitational action with respect to the boundary metric. We carry out the calculation

of the stress-energy tensor that is due to the presence of the Chern-Simons term in the

bulk action and find a general expression for the tensor that is valid in any dimension d.

We then compare the holographic anomalies with what one obtains in the standard descent

method and find agreement. Finally, we analyze the gravitational anomaly in six dimen-

sions as arising holographically from a one-loop modification of the gravitational action.

We compare it with the conjectured anomaly for the (2, 0) theory and find a complete

agreement. Before turning to the analysis let us emphasize that throughout the paper we

consider the space-time of Euclidean signature and use the standard (see [31] for instance)

conventions for the definition of the curvature.

2. Brief review of gravitational anomalies

In this section our main source is the original paper [28] and the second volume of the

book [32]. A more recent review is [33]. In the parity-preserving case one can always employ

the Pauli-Villars regularization of loop diagram that preserves the gauge invariance. The

violation of gauge invariance occurs for fields whose gauge couplings violate parity. This is

the case for the general coordinate invariance for fields which are in a complex (or pseudo-

real) representation of the Lorentz group that violates parity. In Euclidean signature, the

complex representations of the Lorentz group SO(d) of d-dimensional Minkowski space

occurs if dimension d = 4k − 2.

As other gauge anomalies, the gravitational anomaly has a topological origin and is

related to certain topological invariants of the tangent bundle in dimension d + 2 = 4k.

These invariants are polynomial in the Riemann curvature Ra
b = 1

2Ra
bµνdxµ ∧ dxν two-

form. We remind that Ra
b = dωa

b + ωa
c ∧ ωc

b, where ωa
b = ωa

b,µdxµ is the spin connection

one-form, and, with respect to indices a and b, is antisymmetric d × d matrix. Important

property is that the trace of any odd number of matrices Ra
b vanishes,

Tr(R2k−1) = 0 .
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Thus only the even powers of R can be used to construct the invariants. Since the latter

should be further integrated over a manifold M of dimension D, only if D = 4n such

invariants are non-trivial. The gravitational anomaly in dimension d is obtained by the

descent mechanism from the invariants in two dimensions higher, D = d + 2. This is

yet another reason why the gravitational anomaly should be expected to appear in the

dimension d = 4k − 2.

There are certain combinations of invariants constructed from R which are sort of

primary and are called the Pontryagin classes. Notice, that if d is even, by an orthogonal

transformation such an antisymmetric d × d matrix can be brought to a skew diagonal

form in terms of its eigen-values xi , i = 1 . . . d
2 . The characteristic Pontryagin class pi(M)

is defined by

det

(

1 − 1

2π
R

)

=

∞
∑

k=0

pk

(2π)2k

p0(M) = 1

p1(M) ≡
∑

i

x2
i = −1

2
Tr R2

p2(M) ≡
∑

i<j

x2
i x

2
j = −1

4
Tr R4 +

1

8
(Tr R2)2

p3(M) ≡
∑

i<j<k

x2
i x

2
jx

2
k = −1

6
Tr R6 +

1

8
Tr R2 Tr R4 − 1

48
(Tr R2)3 . (2.1)

In the descent mechanism, just mentioned, one substitutes Rab in (2.1) by R′
ab = Rab +

∇aξb −∇bξa and then expands everything to the first order in ξa. Being integrated over a

d-dimensional manifold the result takes the general form
∫

ddxξµXµ ,

where Xµ is constructed via the Riemann tensor and its first derivative, thus leading to

the anomaly in the non-conservation of the stress-energy tensor

∇αTα
µ = Xµ . (2.2)

The concrete form of Xµ depends on the dimension d = 4k − 2 and the type of the field.

The anomaly for spin 1/2 particle is determined by this mechanism applied to the Dirac

genus2

Î1/2 =
∏

i

xi/2

sinh(xi/2)
.

Its expansion in terms of the eigenvalues xi gives

Î1/2 = 1 − 1

24
p1 +

1

5760
(7p2

1 − 4p2) +
1

2615120
(−16p3 + 44p1p2 − 31p3

1) + · · · (2.3)

2In order to remove a common factor one usually defines I1/2 = −i(2π)−D/2Î1/2 with similar definitions

of ÎA.
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The anomaly for antisymmetric self-dual tensor is described by

ÎA = −1

8

∏

i

xi

tanh xi
(2.4)

which has expansion

ÎA = −1

8
− p1

24
+

1

5760
(16p2

1 − 112p2) +
1

967680
(−7936p3 + 1664p1p2 − 256p3

1) + · · · .(2.5)

Another field which may contribute to the gravitational anomaly is gravitino. Its anomaly

is determined by the corresponding invariant polynomial. Since the theory on the boundary

of AdS is not supposed to contain gravity we skip the discussion of the anomaly due to

gravitino.

In addition to the pure gravitational anomalies there may be the mixed anomalies

which are due to loop diagrams that contain both external gravitons and gauge fields.

Thus, the chiral field should carry the Yang-Mills charge. The only massless chiral field of

this type is Weyl spinor. The mixed anomaly then is determined by invariant polynomials

involving both the curvature R two-form and the field strength F = dA + A ∧ A of the

Yang-Mills field. For gauge field in real representation of the gauge group we have that

tr F 2k+1 = 0 and the relevant polynomial is

Î1/2(F,R) = tr(cos F )Î1/2(R) , (2.6)

where Î1/2(R) was introduced above. It has the following expansion

Î1/2(F,R) = n +

[

c2 −
n

24
p1

]

+

[

− 1

6

(

c4 +
1

2
c2
2

)

+
n

5760
(7p2

1 − 4p2)−
p1

24
c2

]

+ · · · , (2.7)

where n = tr 1 is dimension of the representation of the gauge group and cj(F ) is the Chern

class defined as det(1 + iF/2π) =
∑

j ijcj(F )/(2π)j . In terms of the field strength we have

that c0(F ) = 1, c2(F ) = −1
2 tr F 2, c4(F ) = 1

8(tr F 2)2 − 1
4 tr F 4.

3. Gravitational Chern-Simons terms

The gravitational Chern-Simons terms Ω2n+1 are defined as3

dΩ2n+1 = TrRn+1 (3.1)

and are certain polynomials of the spin connection ωa
b and its exterior derivative dωa

b (or,

equivalently, of curvature Ra
b). The closed form for arbitrary n is

Ω2n+1 = (n + 1)

∫ 1

0
dt tn Tr(ω(dω + tω2)n) . (3.2)

Both the spin connection ωa
b and the curvature Ra

b take values in the algebra of the Lorentz

group so that the other name for Ω2n+1 is the Lorentz Chern-Simons term. Thus, both ω

3We will skip writing symbol ∧ for the wedge product of several differential forms.
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and R are antisymmetric in the Lorentz indices. Variation of the term (3.2) under a small

change of the spin connection is

δΩ2n+1 = (n + 1)Tr(δωRn) + d(. . .) , (3.3)

where d(. . .) stands for a term which is exact form. As was discussed in section 2, R is

antisymmetric matrix so that the trace of the product of odd number of R gives zero.

Similarly, we have that Tr(δωR2k) = 0 that can be shown by taking the transposition of

this expression. Thus, for even n the right hand side of both (3.1) and (3.3) is vanishing

(in the case of (3.3) it is up to an exact form). So that, neither action
∫

Ω2n+1 produces

the non-trivial field equations if n is even. The case of odd n = 2k − 1 will be further

considered. The Chern-Simons action

WCS = an

∫

M2n+1

Ω2n+1 , an =
2n

n + 1
, (3.4)

where n = 2k − 1 with integer k, describes non-trivial dynamics for the gravitational field.

The spin connection is not independent variable. It is determined by equation

dea + ωa
b ∧ eb = 0 , (3.5)

where ea = ha
µdxµ is the vielbein, a ”square root” of metric, Gµν = ha

µhb
νδab. The com-

ponents of the vielbein can be used to project the local Lorentz indices to the coordinate

indices and vice versa. Useful formula for calculating the components of the spin connection

in terms of the vielbein is

ωab,µ =
1

2
(Caνµhν

b + Cbµνh
ν
a − Cdαβhα

ahβ
b hd

µ) ,

Ca
µν ≡ ∂µha

ν − ∂νh
a
µ . (3.6)

The Riemann curvature satisfies the two types of identities

Ra
[µ,αβ] = 0 ⇐⇒ Ra

b ∧ eb = 0 (1)

∇[αRµν
βγ] = 0 ⇐⇒ ∇Ra

b = 0 (2) (3.7)

which will be useful in our analysis.

Conformal invariance. In this section we would like to find the general form for the

field equations which follow from the Chern-Simons action (3.4) when we vary the vielbein.

This will be done in a moment. We pause here to show that the gravitational Chern-Simons

is actually conformal invariant so that the field equation which follows from (3.4) should

be traceless. It immediately follows from (3.6) that under the rescaling of the vielbein,

ha
µ → eσha

µ, the components of spin connection change as

ωab,µ → ωab,µ + ∂bσhaµ − ∂aσhbµ , (3.8)

where we define ∂a ≡ hµ
a∂µ. The conformal variation of the bulk part of the Chern-Simons

term (3.3) vanishes due to the Bianchi (1) identity. The action (3.4) is thus conformal in-

variant provided that the conformal parameter σ vanishes on the boundary of M4k−1. This

is an interesting feature common to the gravitational Chern-Simons terms in all dimensions.
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Field equations. Now we are in a position to find an explicit form for the field equations

which follow from the Chern-Simons action (3.4) when we vary the vielbein ha
µ. We first

rewrite the integrated variation formula (3.3) in components and neglect possible boundary

terms4

δWCS =

∫

d2n+1x h εσ1σ2...σ2nµ Ra
a1σ1σ2

Ra1

a2σ3σ4
. . . R

a2n−2

b σ2n−1σ2n
δωb

a,µ , (3.9)

where h = det ha
µ. Variation of the spin connection (3.6) under the infinitesimal change of

the vielbein

δωa
b,µ = δΓα

µνha
αhν

b − hν
b∇µδha

ν (3.10)

is a combination of a part due to variation of the vielbein alone and of another part which

is due to variation of the vielbein inside the metric. The latter comes from the variation

of the Christoffel symbol

δΓα
µν =

1

2
[−∇αδgµν + ∇µδgα

ν + ∇νδg
α
µ] , δgα

µ ≡ gανδgµν . (3.11)

Substituting (3.10) into (3.9) we notice that the part due to the variation of the vielbein

vanishes after integrating by parts and using the Bianchi (2) identities. The only non-

trivial variation thus comes from that of the metric. This variation of the Chern-Simons

term can be shown to vanish (provided that both types of the Bianchi identities are used)

identically if n is even. This is of course consistent with the arguments given earlier in this

section. If n is odd the variation is non-trivial

δWCS = −2

∫

M2n+1

d2n+1x h δgµν Cµν (3.12)

with a tensor Cµν defined as

Cµν = ∇αS(µν)α ,

Sµνα = −1

2
εσ1σ2...σ2nµ Rν

a1σ1σ2
Ra1

a2σ3σ4
. . . Ra2n−2α

σ2n−1σ2n
, (3.13)

where symmetrization is defined as B(µν) = 1
2 (Bµν + Bνµ). The tensor Sµνα is antisym-

metric in last two indices. It is vanishing when the trace over any pair of indices is taken

and is covariantly conserved,

Sµνα = −Sµαν , Sαν
α = 0 , ∇µSµνα = 0 . (3.14)

In this respect it resembles the tensor of spin. We however do not pursue this analogy in

the present paper. By virtue of the Bianchi identities (3.7) the tensor Cµν is traceless and

covariantly conserved.

4We use that dxσ1 ∧ . . . ∧ dxσ2n+1 = εσ1...σ2n+1hd2n+1x, h = det ha
µ and εσ1σ2... = hσ1

a1
hσ2

a2
. . . εa1a2....
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Dimension d + 1 = 3 (n = 1). The three-dimensional General Relativity with the

gravitational Chern-Simons term added is known as a topologically massive gravity and

was first considered in [34] and [35]. In the three-dimensional case we have that

Sµνα = −1

2
εσ1σ2µRνα

σ1σ2
. (3.15)

This can be further brought to another form using the fact that the Riemann tensor in

three dimensions is expressed in terms of the Ricci tensor and the Ricci scalar as follows

Rνα
σρ = δν

σPα
ρ + δα

ρ P ν
σ − δν

ρPα
σ − δα

σP ν
ρ ,

where Pα
β = Rα

β − 1
4δα

β R. By means of this relation we find that

Sµνα = εσνµPα
σ + εµασP ν

σ . (3.16)

The first term in the above expression is antisymmetric in µ and ν so it drops out in the

symmetrization (3.13). The second term, on the other hand, is symmetric in indices µ and

ν that can be shown by contracting this term with εµνρ and demonstrating that this gives

zero provided the Bianchi identities are employed once again. We finally have that

Cµν = ∇αS(µν)α = εµασ∇α

(

Rν
σ − 1

4
δµ
σR

)

. (3.17)

In three dimensions the tensor Cµν is known as the Cotton tensor. It plays an important

role since it is the only conformal tensor available in three dimensions. Expression (3.13)

gives a generalization5 of the Cotton tensor to higher dimensions (n > 1). The higher

dimensional generalization gives the conformal tensors as well.

Conformal property of Cµν. The tensor Cµν defined in (3.13) is a conformal tensor

of weight −(d + 3). This property makes it similar to Weyl tensor. In order to obtain the

transformation law for the tensor Cµν in dimension d + 1 (d = 2n = 4k− 2, k ∈ Z) we first

note that under the infinitesimal conformal transformation δσha
µ = δσha

µ the tensor S(µν)α

transforms as follows

δσS(µν)α = −(d + 3)δσ S(µν)α + εσ1...σd−1α(µRν)
a1σ1σ2

. . . Ran−2

an−1σd−3σd−2
∇σd−1

∇an−1δσ .

(3.18)

From this it is straightforward to derive that

∇α{δS(µν)α} = −(d + 3)δσ S(µν)α − (d + 2)S(µν)α ∂αδσ . (3.19)

Combining this with the obvious property

δ(∇α)S(µν)α = (d + 2)S(µν)α ∂αδσ (3.20)

we find that tensor Cµν = ∇αS(µν)α transforms as

δCµν = −(d + 3)δσ Cµν (3.21)

5There have been earlier suggested some generalizations [36] of the Cotton tensor to higher dimensions.

These are however linear in the Riemann curvature and thus differ from (3.13).
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under the conformal transformations. As is well known (see, for instance, Proposition 2.1

in [40]) the transformation law (3.21) under the infinitesimal conformal transformations

implies that the tensor Cµν is conformal and changes properly under the finite conformal

transformations. On the other hand, this property follows directly from the fact that Cµν

is obtained as the metric variation of a conformal invariant functional (a nice discussion of

this general fact can be found, for instance, in [18]). The tensor Cµν , thus, vanishes for any

metric conformal to the maximally symmetric, constant curvature, metric gccµν . Indeed, the

Riemann tensor Rαβ
µν = R

d(d+1) (δ
α
µδβ

ν −δα
ν δβ

µ) for a maximally symmetric metric so that the

tensor Sµνα, and hence Cµν , vanishes identically in this case.

Thus, the tensors Cµν (3.13) share same properties in all dimensions 4k − 1, k ∈ Z:

they are traceless, covariantly conserved and conformal. Conformal tensors traditionally

play special role in differential geometry and their complete classification is a long-standing

problem. We are, however, not aware of any earlier appearance of tensors (3.13) in the

mathematics or physics literature.

This tensor, actually, differs from all known conformal tensors in an interesting way.

Consider metric gµν = gccµν + ηµν which is a small deformation of a constant curvature

maximally symmetric metric gccµν . Usually, a conformal tensor T for such a deformation

takes the form (skipping the indices) T = Dη with D being some invariant differential

operator. Such operators can be classified that allows to classify all conformal invariants

which are represented in such a form for a small deformation of the maximally symmetric

metric. The corresponding classification theorem is due to Graham and Hirachi [38]. In

particular, it says that in odd dimensions (which is of our interest) there is only Weyl

tensor. Interestingly, tensor Cµν (3.13) does not fit in the conditions of this theorem6. It is

polynomial in small deformation of the maximally symmetric metric, C[gcc+η] ∼ η2k−1, in

dimension 4k−1, k > 1. This can be easily seen already for tensor Sµν : due to the Bianchi

identities the linear term and all terms η2l−1, l < k vanish identically. In dimension 7

one can find explicit form for the leading term. It is more convenient to write it for the

tensor Sµνα,

S(µν)α = −1

2
εσ1...σ6(µDν)

σ1a1σ2
Da1

σ3a2σ4
Da2 α

σ5 σ6

+
R

2d(d + 1)
εσ1...σ5α(µDν)

σ1a1σ2
Da1

σ3a2σ4
ηa2

σ5
, (3.22)

where we have introduced notation

Dα
σ1aσ2

= ∇σ1
(∇aη

α
σ2

−∇αηaσ2
) , ηα

σ = gαβ
cc ηβσ .

Reducible Chern-Simons terms. So far we have considered the irreducible form of

the Chern-Simons terms. There can be, however, forms which reduce to the product of

several such terms. An example is

W
(k,p)
CS = (n + 1)an

∫

M2n+1

Ω2k+1dΩ2p+1 , n = k + p + 1 . (3.23)

6I thank Robin Graham for discussion on this point.
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The metric variation

δW
(k,p)
CS = −8

∫

M2n+1

Cµν
(k,p)δgµν (3.24)

of this action gives a tensor

Cµν
(k,p) = −1

8
εσ1...σ2n(µ∇α

[

(k + 1)Rν)
a1σ1σ2

. . . R
a2k−2α

σ2k−1σ2k(Rc1
c2σ2k+1σ2k+2

. . . R
c2p+1

c2p+2σ2n−1σ2n)

+(p + 1)Rν)
a1σ1σ2

. . . R
a2p−2α

σ2p−1σ2p(R
c1
c2σ2p+1σ2p+2

. . . R
c2k+1
c2k+2σ2n−1σ2n)

]

. (3.25)

It is traceless and covariantly conserved and is yet another possible generalization of the

Cotton tensor to higher dimensions. If one includes the Yang-Mills field into consideration

there may appear the mixed terms like

Wmix =

∫

M2n+1

Ω2p+1 tr F k , n = k + p . (3.26)

The metric variation of this action is obvious.

4. Holographic evaluation of gravitational anomaly

According to the holographic conjecture the (d+1)-dimensional gravitational theory (re-

ferred as the bulk theory) is equivalent to a d-dimensional conformal field (boundary)

theory. The boundary in question is the boundary of an asymptotically AdS space-time

which is a solution to the gravitational bulk theory. More generally, the duality is formu-

lated for string theory (or M-theory) on anti de-Sitter space and the (super)-gravity action

is a low-energy approximation to this more fundamental theory. The (super)-gravity action

generically has the higher derivative modifications of the purely gravitational part of the

action. Here we consider the case when this modification is in the form of the gravitational

Chern-Simons terms. These terms may appear in particular due to the Kaluza-Klein re-

duction of the higher curvature terms generically present in the 11-dimensional M-theory

action.

The gravitational theory in (d+1)-dimensional space-time is given by the action

Wgr = WEH −
β

32πGN
WCS , (4.1)

which is sum of the Chern-Simons term (3.4) and the ordinary Einstein-Hilbert action

(with a negative cosmological constant)

WEH = − 1

16πGN

[
∫

Md+1

(R[G] + d(d − 1)/l2) +

∫

∂Md+1

2K

]

, (4.2)

where K is trace of the second fundamental form of boundary ∂M . GN is Newton’s

constant in d+1 dimensions. Parameter l sets the AdS scale. We will use units l = 1. One

can add to the action (4.1) the reducible forms of the gravitational Chern-Simons term

existing in the dimension d + 1. Note, that the analytic continuation of the Chern-Simons

action to Lorentzian signature is somewhat subtle and involves the multiplication by i. So
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that if the coupling β is purely imaginary in Euclidean signature (as is reasonable from the

boundary point of view since the gravitational anomaly comes from the imaginary part of

the quantum action) it becomes real in Lorentzian signature. The analytic continuation of

the topological terms is discussed in [37].

The gravitational bulk equations obtained by varying the action (4.1) with respect to

the metric takes the form

Rµν − 1

2
GµνR − d(d − 1)

2
Gµν + βCµν = 0 , (4.3)

where all curvature tensors are determined with respect to the bulk metric Gµν . The

tensor Cµν is a result of the variation of the gravitational Chern-Simons term. Although

the Chern-Simons terms are defined in terms of the Lorentz connection which is not gauge

invariant object the variation is presented in the covariant and gauge invariant form as

we have shown in the previous section. This is just a manifestation of the fact that the

”non-invariance” of the Chern-Simons term resides on the boundary and does not appear

in the bulk field equations. By virtue of the Bianchi identities this quantity (both for

the irreducible and reducible Chern-Simons terms) is manifestly traceless and identically

covariantly conserved,

CµνG
µν = 0 , ∇µCµ

ν = 0 . (4.4)

Due to these properties we find that solution to the equation (4.3) is space-time with

constant Ricci scalar R = −d(d + 1). This is exactly what we had when the Chern-Simons

term was not included in the action. In that case moreover the Ricci tensor was proportional

to metric, Rµν = −dGµν . It is no more the case in the presence of the Chern-Simons term

and we have

Rµν = −dGµν − βCµν . (4.5)

This is that equation which we are going to solve. We start with choosing the bulk metric

in the form

ds2 = GµνdXµdXν = dr2 + gij(r, x)dxidxj (4.6)

that always can be done by using the appropriate normal coordinates. The quantity gij(r, x)

is the induced metric on the hypersurface of a constant value of the radial coordinate r.

The following expansion

g(r, x) = e2r
[

g(0) + g(2)e
−2r + · · · + g(d)e

−dr + h(d) re−dr + O(e−(d+1)r)
]

(4.7)

is assumed so that the metric (4.6) describes an asymptotically anti-de Sitter space-time

with g(0) being the metric on its d-dimensional boundary. The non-vanishing term h(d)

generically appears in the expansion if dimension d is even. In the mathematics literature

this tensor is known as the obstruction tensor (see [38, 39]). It is traceless, covariantly

conserved and conformal in any even dimension d. By a general argument given in [16] it is

a multiple of the stress tensor derived from the integrated holographic conformal anomaly.

It follows immediately that this term vanishes identically when d = 2 since the conformal

anomaly then is a multiple of the Ricci scalar and, if integrated, gives a topological invariant

and no non-trivial metric variation appears.
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Holographic stress-energy tensor. The holographic (or dual) stress-energy tensor is

generally defined as a variation of the gravitational action with respect to the metric g
(0)
ij (x)

on the boundary. The gravitational action is considered on-shell, i.e. the bulk metric is

supposed to solve the Einstein equations subject to the Dirichlet boundary condition. Since

the boundary is at infinity the action should be properly defined. A simple way to do it is

to consider a sequence of boundaries at finite value of the radial coordinate r with induced

boundary metric gij(x, r) (for large r we know that gij(x, r) = e2rg(0)ij(x) + · · ·). This

way we get a regulated gravitational action. However, this action is typically divergent

when regulator r is taken to infinity. On the boundary theory side these divergences have

a natural interpretation as the UV divergences. Some renormalization is typically needed.

A rather natural way to renormalize the divergences is to add some local boundary counter

terms [10, 11, 17, 16] to the action. These boundary terms do not change the bulk field

equations. They not just cancel the divergences but also contribute to the finite part of

the action and, in particular, to the finite part of the holographic stress-energy tensor.

When the boundary dimension d is odd the exact form of the holographic stress tensor

is known [16]. It is determined only by the coefficient g
(d)
ij (x) in the Fefferman-Graham

expansion taken with the appropriate coefficient. When the dimension d is even no general

form of the dual stress-energy tensor is known except in some particular cases, d = 2, d = 4

and d = 6 [16]. The expression in terms of the extrinsic curvature (instead of the metric)

is however available [20].

In the presence of the Chern-Simons term the holographic stress-energy tensor is mod-

ified. Surprisingly, we can get a general form of this modification rather explicitly. In

order to see this let us remind the basic steps in defining the holographic stress-energy

tensor. Let us introduce small parameter ε = e−2r which determines the location of the

regularized boundary with the induced metric gij(x, r(ε)) which is the same quantity that

appears in (4.6). The expectation value of the stress-energy tensor of the dual theory is

then given by

〈Tij〉 =
2

√

det g(0)

δWgr,ren

δgij
(0)(x)

= lim
ε→0

(

1

εd/2−1
Tij [g]

)

, (4.8)

where

Tij [g] =
2

√

det g(x, r(ε))

δWgr,ren

δgij(x, r(ε))
(4.9)

is the stress tensor of the theory at finite ε. It contains two contributions,

Tij [g] = T
reg
ij + T ct

ij ,

where T
reg
ij = − 1

8πGN
(Kij − Kgij) comes from the regulated Einstein-Hilbert action and

T ct
ij is the contribution of the boundary counterterms. Their role is to cancel the possible

divergences in (4.8) when ε is taken to zero.

We now want to apply this prescription and compute the part in the dual stress-

energy tensor which is due to the gravitational Chern-Simons term. All we need to do is
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take variation of the Chern-Simons action with respect to the induced metric gij(x, r(ε))

on the regularized boundary and calculate Tij [g]. Then insert it into equation (4.8) and

take the limit of ε to zero. The equation (3.9) accompanied with (3.10) and (3.11) is a

good starting point for the first step. Notice, that in (3.9) the variation with respect to

the boundary value of vielbein results in some term T a
i which however gives zero after the

symmetrization, ha(jT
a
i), needed to define the metric stress-energy tensor. Thus, the only

contribution to the stress-energy tensor comes from the metric variation in (3.11). We find

that

δW
reg
CS = − β

32πGN

∫

ddx
√

g [Sijr − Srji − Sirj ]δgij

= − β

16πGN

∫

ddx
√

g S(ij)rδgij , (4.10)

where tensor Sµνα was introduced in (3.13) and, in the second line, we have used its

symmetry properties (3.14). This gives us that

Tij[g] =
β

8πGN
S(ij)r(g(x, r(ε))) . (4.11)

This should then be expanded in the powers of ε and substituted in (4.8). The analysis

shows that the leading divergences in the resultant expression vanish either as a result

of the symmetrization in indices i and j or due to the Bianchi identities and we are left

with a finite expression. This quite remarkable fact (in dimension d = 2 this was observed

in [26]) means that the dual stress-energy tensor is finite with no need to introduce any

new counterterms. The general form for the finite expression can be easily obtained for

arbitrary d by using the expansions (B.4), (B.5) and (B.6) of appendix B,

T CS
ij = − β

8πGN
ε
k1k2...kd−1

(i R n1

j) k1k2
R n2

n1 k3k4
. . . R

nd−2

nd−3 kd−3kd−2
g
(2)
nd−2kd

, (4.12)

where one uses the metric g(0)ij to compute the components of the Riemann tensor. Thus,

we have to know only the coefficients g(0)ij and g(2)ij in the Fefferman-Graham expansion

to determine the part in the dual stress-energy tensor which is due to the Chern-Simons

term.

Solving the Einstein equations. The expressions for the components of the bulk cur-

vature are given in appendix A. The strategy of solving the Einstein equations is to

substitute the expansion (4.7) in the modified Einstein equations (4.5) and expand both

sides of the equations in powers of e−r. Equating coefficients at the same order on both

sides one gets the recurrent relations between coefficients of the expansion (4.7) which al-

low one to determine g
(n)
ij (x) provided coefficients g

(k)
ij (x), k < n are already known. The

only boundary data required for this procedure to work is value of the boundary metric

g
(0)
ij (x) and the value of the coefficient g

(d)
ij (x) which is ultimately related to the stress-

energy tensor of the boundary CFT. Einstein equations impose constraints on its trace

and divergence. The latter thus determines the conservation (or non-conservation) of the

stress-energy tensor. The constraint on divergence of g
(d)
ij appears in the e−dr order of the
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expansion of (ri) component of the Einstein equations. It is thus suffice for our purposes

to look only at this part of the Einstein equations. The expansion for the inverse metric

and the Riemann tensor is given in appendix B. Since we have to calculate the expansion

of (ri) component of the tensor Cµν we present below the expression for this component

in terms of the tensor Sijk,

Cri =
1

2

{

∇jS
rij + ∇jS

irj + ∂rS
rir +

1

2
Tr(g−1g′)Srir +

1

2
(g−1g′)ijS

rrj − 1

2
g′knSkin

}

,

(4.13)

where ∇j is defined with respect to the effective metric gij(r, x). The further analysis

depends on value of dimension d.

Dimension d = 2. The case of two-dimensional boundary was considered in [27] and

the holographic tensor was found earlier in [26]. Below we present some details of the

analysis. In this case the first non-vanishing contribution to components Cri appears in

e−4r order. The components of tensor Sµνα are easy to calculate using (3.15) and the

expansion (B.4), (B.5), (B.6) of the Riemann tensor. In the leading order one has

Srij =

(

−1

2
Rεij + εkigj

(2)k
− εkjgi

(2)k

)

e−4r + · · · (4.14)

Sirj = εjie−2r + O(e−6r)

Srrj = −εkn∇kg
j
(2)ne−4r + · · ·

Skin = εkl
(

∇ign
(2)l −∇ngi

(2)l

)

e−6r + · · ·

So that the leading term in the expansion of the component of the tensor Cµν can be now

calculated using (4.13),

Cri = gijC
rj =

{

−1

4
εj
i∂jR +

1

2

(

εk
i∇jg

j
(2)k + εkj∇jg(2)ki

)

}

e−2r + · · · (4.15)

As we see from (B.5) and (B.2) the (i, r) component of the Ricci tensor has expansion

Rri =
[

−∇jg
j
(2)i + ∂j Tr g(2)

]

e−2r + · · · (4.16)

Looking now at the expansion of (ir) component of the Einstein equations (4.5) we get the

constraint on the coefficient g(2)ij that can be presented in the form

∇jt
j
i = −β

4
ε j
i ∂jR ,

tij = g(2)ij − g(0) Tr g(2) +
β

2

(

ε k
i g(2)jk + ε k

j g(2)ik

)

. (4.17)

The holographic stress-energy tensor is defined as

Tij =
1

8πGN
tij . (4.18)
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The part in the holographic stress tensor which is due to the Chern-Simons term is in agree-

ment with the general expression (4.12). The divergence of (4.18) produces a gravitational

anomaly

∇jT
j
i = − β

32πGN
ε j
i ∂jR . (4.19)

This is precisely the anomaly which is expected to appear in two dimensions. It originates

from p1 (see [28, 41]) via the descent mechanism outlined in section 2.

Dimension d=6. The analysis in six-dimensional case is much more laborious. In the

absence of the gravitational Chern-Simons term the analysis was done in [16]. The con-

struction of the holographic stress tensor in terms of the coefficients in the expansion of

metric is then already non-trivial and the precise prescription is given in [16]. Turning on

the Chern-Simons term makes things even more complicated. Fortunately for us we do not

need to go to a full analysis of the modified Einstein equations but have to look only at

the e−6r order of the (ir) component of the Einstein equations which determines, as was

shown in [16], the conservation law for the holographic stress-energy tensor.

The tensor Sµνα in six dimensions takes the form

Sµνα = −1

2
εµ1...µ6µRν

a1µ1µ2
Ra1

a2µ3µ4
Ra2α

µ5µ6
. (4.20)

The expansion (B.4), (B.5) and (B.6) of the Riemann tensor is sufficient for the analysis

of the leading behavior of the components of the tensor (4.20). Below we summarize this

analysis:

Srij =

{

−1

2
εk1...k6Ri

n1k1k2
Rn1

n2k3k4
Rn2j

k5k6
− εk1...k5jRi

n1k1k2
Rn1

n2k3k4
gn2

(2)k5

}

e−8r , (4.21)

Sirj =
{

εk1...k5ig
(2)
n1k1

Rn1

n2k2k3
Rn2j

k4k5
+ 2εk1...k4jig

(2)
n1k1

Rn1n2

k2k3
g
(2)
n2k4

+4εk1...k4ji∇k1
g
(2)
nk2

∇k4
gn
(2)k3

}

e−8r , (4.22)

Srir = εk1...k6Ri
n1k1k2

Rn1

n2k3k4
∇k5

gn2

(2)k6
e−8r , (4.23)

Skin = εk1...k5kRi
n1k1k2

Rn1

n2k3k4
∇ngn2

(2)k5
e−10r , (4.24)

where we keep only the leading terms, components of the Riemann tensor are defined with

respect to metric g(0)ij . Notice that in (4.24) we have dropped the terms which vanish

when the trace g
(0)
kn Skin is taken. Such terms appear both in the order e−8r and in the

order e−10r and are not shown in (4.24).

The expansion (4.21), (4.22), (4.23) and (4.24) should be now substituted into equa-

tion (4.13). After some reshuffle and noticing that quite a few terms vanish due to the

Bianchi identities we get a quite simple result

Cri = ∇j

{

−1

4
εk1...k6Ri

n1k1k2
Rn1

n2k3k4
Rn2j

k5k6

+
1

2
εk1...k5iRj

n1k1k2
Rn1

n2k3k4
gn2

(2)k5
+

1

2
εk1...k5jRi

n1k1k2
Rn1

n2k3k4
gn2

(2)k5

}

e−6r . (4.25)
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Obviously, the first term in the brackets is antisymmetric in indices i and j while the two

other terms form a symmetric tensor. The latter will modify the holographic stress-energy

tensor while the first term will produce a gravitational anomaly.

The expansion of the Ricci tensor to the required order was found in [16]. We refer

the reader to that paper for the details. The result is

Rri = −3∇j

(

g(6) − A(6) +
1

24
S

)j

i

e−6r , (4.26)

where we focus only on the term of the order e−6r. The tensors A(6)ij and Sij are local

covariant functions of the metric g(0)ij and its derivative, exact expressions are rather

lengthy and given in paper [16].

Introduce tensor t
(β)
ij as follows

t
(β)
ij = g(6)ij − A(6)ij +

1

24
Sij −

β

3
εk1...k5

(iRj)n1k1k2
Rn1

n2k3k4
gn2

(2)k5
, (4.27)

where the normalization has been chosen in agreement with [16]. Note that in the dimension

d > 2 the coefficient g(2) is a local covariant function of the metric g(0). In particular, for

d = 6, we have that

g(2)ij = −1

4

(

Rij −
1

10
Rg(0)ij

)

. (4.28)

This relation remains the same when the Chern-Simons term is added to the bulk equations.

The constraint that comes from the (ir)-component of the Einstein equation, Rir+βCir = 0,

can be now presented in the following form

∇jt
j
(β)i = − β

12
εk1...k6∇j(R

i
n1k1k2

Rn1

n2k3k4
Rn2j

k5k6
) . (4.29)

Obviously, the tensor tj(β)i (4.27) is defined by this equation only up to covariantly conserved

term (proportional to h(6)). The holographic stress-energy tensor in the absence of the

Chern-Simons term, β = 0 in this case, was defined in [16]. Extending this definition to the

present case and taking into account the general expression (4.12) for the CS contribution

we define the stress-energy tensor as follows

Tij =
3

8πGN
t
(β)
ij . (4.30)

Defined this way this tensor (in the case when β = 0) was shown in [16] to be symmetric,

covariantly conserved and its trace to be the conformal anomaly of the boundary CFT.

Notice, that the β-dependent modification in (4.27) is traceless so that the trace of the

modified stress-energy tensor remains the same. The stress tensor is however not conserved

anymore due to the gravitational anomaly,

∇jT
j
i = − β

32πGN
εk1...k6∇j(R

i
n1k1k2

Rn1

n2k3k4
Rn2j

k5k6
) . (4.31)
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This is exactly the anomaly that originates in the descent mechanism from the term Tr R4

in the Pontryagin class p2. This is however not the most general form of the gravitational

anomaly in six dimensions. Indeed, another possible anomaly originates from the term

(tr R2)2 which appears both in p2 and in p2
1. This anomaly comes out holographically if

one adds a reducible form of Chern-Simons term to the bulk gravitational action.

Anomaly from the reducible Chern-Simons term. In six dimensions the only pos-

sible reducible form of the Chern-Simons term is W
(1,1)
CS = 4a3

∫

Ω3 ∧ dΩ3. Adding this

term to the gravitational action

Wgr = WEH −
β

32πGN
WCS −

β1

128πGN
W

(1,1)
CS (4.32)

with some coupling β1 we get, after some regrouping the terms, the modified Einstein

equations

Rµν = −dGµν − βCµν − β1C
(1,1)
µν , (4.33)

where we took into account that C
(1,1)
µν is traceless. Tensor C

(1,1)
µν was defined in (3.25) to

take the form

Cµν
(1,1) = −1

2
εσ1...σ6(µ∇α

[

Rν)α
σ1σ2

(Rc1
c2σ3σ4

Rc2
c1σ5σ6

)
]

, (4.34)

where all indices run from 1 to 7. Again we have to look at the (r, i) component of the

modified Einstein equations (4.33). The analysis goes through same steps as before, now

for the tensor Cµν
(1,1). Skipping the details which are pretty straightforward we present the

result for the leading term in the large r expansion

Cri
(1,1) = ∇j

{[

−1

4
εk1...k6Rij

k1k2
+ εk2...k6(ig

j)
(2)k2

]

Rn1

n2k3k4
Rn2

n1k5k6

}

e−8r . (4.35)

Here all indices (including n1 and n2) run from 1 to 6. The new constraint which comes

from the (r, i) component of equations (4.33) can be properly formulated in terms of the

tensor

tij(β,β1)
= tij(β) −

β1

3
εk2...k6(ig

j)
(2)k2

Rn1

n2k3k4
Rn2

n1k5k6
, (4.36)

where in the last term the symmetrization in indices i and j is assumed. We can now define

the holographic stress tensor as

Tij =
3

8πGN
t
(β,β1)
ij (4.37)

in analogy with (4.30). Its divergence is now a combination of the contributions from both

the reducible and irreducible Chern-Simons terms

∇jT
j
i = − β

32πGN
εk1...k6∇j(R

i
n1k1k2

Rn1

n2k3k4
Rn2j

k5k6
)

− β1

32πGN
εk1...k6∇j(R

ij
k1k2

Rn1

n2k3k4
Rn2

n1k5k6
) . (4.38)

The second term in the right hand side of (4.38) is precisely a contribution to the gravi-

tational anomaly from the term (Tr R2)2 via the descent method. So that equation (4.38)

presents the most general form of the gravitational anomaly in six dimensions.
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Some comments. The tensor (4.30), or more generally (4.37), has a dual meaning. It

is the expectation value of the quantum stress-energy tensor in the dual CFT and is the

quasi-local stress-energy tensor introduced by York and Brown [42] to define the energy and

angular momentum for solution to the bulk gravitational equations. In three dimensions

the Cotton tensor vanishes for any metric conformal to the constant curvature metric.

That’s why the BTZ metric describing three-dimensional black hole remains a solution to

the modified Einstein equations (4.5). The stress-energy tensor (4.18), (4.17) then can be

used to calculate the modified values for the mass and angular momentum of the BTZ

black hole [26, 27]. In higher dimensions general solution to Einstein equations with a

cosmological term is no more maximally symmetric metric so that the tensor Cµν is non-

vanishing. This means that some modification of the known solutions describing black

hole in asymptotically AdS space-time should be expected. The finding exact solutions to

the modified Einstein equations (4.5) or (4.33) is an interesting problem that possibly can

be approached numerically. Provided such a solution is known our formulas (4.18), (4.17)

or (4.37), (4.36) can be used to calculate the conserved quantities of the solution. We

however note that unlike the three-dimensional case in higher dimensions the β-dependent

modification in (4.36) vanishes if the boundary metric g
(0)
ij (x) is flat or is a maximally

symmetric constant curvature metric. Only if there is a solution which approaches a non-

maximally symmetric metric at infinity then the modification (4.36) or (4.27) of the stress-

energy tensor would be relevant. Also, only in this case the gravitational anomaly (4.38)

will be actually visible.

5. Remarks on anomalies

Comparison with the descent method. The Chern-Simons term which was added to

the bulk gravitational action can be used for calculation of the anomaly using the descent

method. In this subsection we do this calculation and compare the resultant anomaly with

the one obtained holographically and find that these two anomalies are identical. It is more

convenient to calculate first the local Lorentz anomaly and then transform the result to

the gravitational anomaly.

We start with some general remarks on the Lorentz symmetry and the Lorentz anomaly.

We introduce the vielbein stress-energy action as T i
(h)a = 2

h
δW
δha

i
. The subscript (h) is

supposed to differ this from the metric stress tensor T ij
(g) = 2√

g
δW
δgij . W is the action of the

theory in question. These two objects are related as

T ia
(h) = T ij

(g)h
a
j + T ji

(g)h
a
j .

We raise the Lorentz indices with the help of δab. Under the infinitesimal local Lorentz

transformations the vielbein and the spin connection transform as

δha
i = αa

bh
b
i , δωa

b,i = −∂iα
a
b , αab = −αba . (5.1)

In the Lorentz invariant theory one has that T
[ab]
(h) = 0, T ab

(h) = T ia
(h)h

b
i . On quantum level in

d-dimensional chiral theory the Lorentz symmetry may be violated if d = 4k − 2. In the
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descent method the violation is determined by a (d + 2)-dimensional invariant form Id+2

which is polynomial in the Riemann curvature as was explained in section 2. This form is

locally exact Id+2 = dICS, where I
(d+1)
CS is a (d+1)-dimensional Chern-Simons term. Under

the local Lorentz transformations (5.1) this term changes as δαI
(d+1)
CS = d[Xabαba], where

Xab = Xab
i1...id

dxi1 ∧ . . .∧dxid is a d-form. The anomaly then shows up in the non-vanishing

antisymmetric part of T ab
(h) and reads

1

2
T

[ab]
(h) = εi1...idXab

i1...id
. (5.2)

For instance, take I
(d)
CS = − β

32πGN
anΩ

(2n+1)
CS and apply the descent procedure. Using (3.9)

we get that it leads to the Lorentz anomaly

1

2
T

[ab]
(h) = − β

32πGN
εi1...id

(

Ra
c1,i1i2 . . . R

bcd−2

id−1id

)

, (5.3)

the expression in the right hand side is obviously antisymmetric in indices a and b if

d = 4k − 2. The non-vanishing antisymmetric part of T ab
(h) would imply that the metric

stress-energy tensor is not symmetric. Keeping T ij
(g) symmetric we should subtract the

antisymmetric part 1
2hi

ah
j
bT

[ab]
(h) . The resultant symmetric tensor is not conserved,

∇jT
ij
(g) = − β

32πGN
εi1...id∇j

(

Ri
c1,i1i2 . . . R

jcd−2

id−1id

)

. (5.4)

This result is the same as if we replaced Rab → Rab + 2∇[aξb] in Id+2 and looked at the

first order in ξa term. This latter prescription was given in section 2. Comparing (5.4) to

the holographic expressions (4.19) (d = 2) and (4.31) (d = 6) we see that in two different

methods, by adding the Chern-Simons action
∫

I
(d+1)
CS to the bulk gravitational action and

looking at the divergence of the dual stress tensor in the holographic method and, in the

second method, by using the same form I
(d+1)
CS in the descent procedure, we get same result.

Same is true for the anomaly determined by the reducible form (verified for Ω3dΩ3 when

d = 7) of the Chern-Simons action. Here we have checked this by brute force. However, it

seems that there may be a more general proof that two methods lead to same result7. It

would be interesting to understand this issue.

Anomaly in (2, 0) six-dimensional conformal theories. In six dimensions there are

two known (2, 0) supersymmetric conformal theories. The first one is the free tensor mul-

tiplet theory which describes the low energy dynamics of a single M5 brane. The other

one is the strongly interacting (2, 0) conformal theory describing N coincident M5 branes.

Some information about this second theory can be gained from its conjectured holographic

duality to M-theory (or, in large N , limit to the 11-dimensional supergravity) on AdS7×S4

background. In particular, the holographic anomalies proved to be an important source of

information about the theory. The conformal anomaly in the (2, 0) theory was calculated

in [10]. The comparison to the anomaly in the free tensor multiplet was done for instance

7I thank Jan de Boer and Kostas Skenderis for suggesting this to me.

– 19 –



J
H
E
P
0
7
(
2
0
0
6
)
0
0
3

in [43]. The conformal anomaly in two theories are mainly related by factor 4N3. This

is the leading contribution to the anomaly which holographically originates from the tree

level supergravity action linear in the curvature. The one-loop effective action contains

quartic in curvature terms. They lead to the O(N) modification of the anomaly. A nice

discussion of this can be found in [45].

The maximal (2, 0) supersymmetric theories are necessarily chiral so that the gravi-

tational anomaly is expected to appear. The free tensor multiplet consists of 5 scalars,

a (anti)selfdual antisymmetric tensor and 2 Weyl fermions. The gravitational anomaly is

thus a descent of 8-form

Itens8 = IA + 2I1/2 = − i

(2π)3192

[

Tr R4 − 1

4
(Tr R2)2

]

, (5.5)

where we use formulas of section 2. The corresponding anomaly of interacting (2, 0), as

conjectured in [44] (by assuming that the M5-brane anomaly should be compensated by

the inflow anomaly), is determined by

I
(2,0)
8 = NItens8 . (5.6)

Note that we focus on the gravitational part of the anomaly neglecting the gauge field and

the mixed anomalies.

The anomaly (5.6) is subleading in N which means that holographically it originates

from a one-loop term in the effective action. Terms of this type were studied in [45]. There

are few terms in the one-loop action which are quartic in curvature. The one of our interest

contains invariant Tr R4− 1
4(Tr R2)2 which is exactly of the type that appears in (5.6), (5.5).

More precisely one finds (we use notations of [45] and make the continuation to Euclidean

signature)

W = − i

(2π)4 · 3 · 26
T2

∫

C3 ∧
(

TrR4 − 1

4
(Tr R2)2

)

, (5.7)

where T2 is the membrane tension and C3 is 3-form potential, for the 11-dimensional action.

This term was first derived in [46] and plays an important role in the inflow mechanism [47,

48]. Here we follow the line of reasoning suggested in [30]. We first integrate (5.7) by parts

and then compactify on S4 with flux8 T2

∫

S4 F = 2πN , F = dC3. The term (5.7) then

reproduces exactly the Chern-Simons action to be added to the 7-dimensional gravitational

action. This action is a source of the six-dimensional gravitational anomaly either through

the holographic procedure or in the descent method analysis. The anomaly takes exactly

the form conjectured in [44]. We can now determine explicitly values of the couplings β

and β1 in the Chern-Simons action. In the units in which radius of S4 is 1/2 we have that

16πG
(7)
N = 3π3/N3 (see [45]) and hence β = i

29N2 and β1 = − i
211N2 .
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A. Curvature components

For metric (4.6) the components of the (d + 1)-dimensional Riemann tensor are

Rr
irj =

1

2

[

−g′′ +
1

2
g′g−1g′

]

ij

Rr
ikj = −1

2

[

∇kg
′
ij −∇jg

′
ik

]

Rl
ikj = Rl

ikj(g) − 1

4
g′ijg

lng′nk +
1

4
g′ikglng′nj , (A.1)

where g′ ≡ ∂rg. Components of Ricci tensor are

Rij = Rij(g) − 1

2
g′′ij −

1

4
g′ij Tr(g−1g′) +

1

2
(g′g−1g′)ij

Rri =
1

2
[∇k(g

−1g′)ki −∇i Tr(g−1g′)]

Rrr = −1

2
Tr(g−1g′′) +

1

4
Tr(g−1g′g−1g′) (A.2)

and the Ricci scalar is

R = R(g) − Tr(g−1g′′) − 1

4
[Tr(g−1g′)]2 +

3

4
Tr(g−1g′g−1g′) . (A.3)

B. Expansion for the inverse metric and the Riemann tensor

As preparation we present here expressions for the inverse of effective metric gij(r, x) and

its derivatives with respect to r

g−1 = e−2rg−1
(0)

[

1 − g(2)e
−2r +

(

−g(4) + g(2)g
−1
(0)g(2)

)

e−4r

+
(

−g(6) + g(2)g
−1
(0)g(4) + g(4)g

−1
(0)g(2) − g(2)g

−1
(0)g(2)g

−1
(0)g(2)

)

e−6r + · · ·
]

g−1
(0)

g′ = 2e2r
(

g(0) − g(4)e
−4r − 2g(6)e

−6r + · · ·
)

g′′ = 4e2r
(

g(0) + g(4)e
−4r + 4g(6)e

−6r + · · ·
)

, (B.1)

where . . . stands for the sub-leading terms. In particular we have that

g−1g′ = 2g−1
(0)

{

1 − g(2)e
−2r +

(

− 2g(4) + g(2)g
−1
(0)g(2)

)

e−4r

+
(

− 3g(6) + 2g(2)g
−1
(0)g(4) + g(4)g

−1
(0)g(2) − g(2)g

−1
(0)g(2)g

−1
(0)g(2)

)

e−6r + · · ·
}

. (B.2)

It is important to note that if the dimensions d is even there generally appears a loga-

rithmic9 term h(d)re
−(d−2)r in the expansion (4.7). In (B.2) this would add extra terms

g−1
(0)(h(d)e

−dr − (d − 2)h(d)re
−dr) plus the corresponding higher order terms.

9The logarithm appears if one uses the radial coordinate ρ = e−2r instead of r.
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Using (A.1) we can get expansion for the components of the Riemann tensor. We find

Rr
irj = −

(

g(0)e
2r + g(2)

)

ij
+ · · · (B.3)

Rri
rj = −δi

j + O(e−4r)

Rr
ikj =

(

∇kg
(2)ij −∇jg

(2)ik
)

+ · · · (B.4)

Rri
kj =

(

∇kg
i
(2)j −∇jg

i
(2)k

)

e−2r + · · ·

R ri
kj =

(

∇kg
(2)i
j −∇jg

(2)i
k

)

e−4r + · · ·

Rl
ikj =

(

g(0)ikδl
j − g(0)ijδ

l
k

)

e2r +
(

R
(0)l

ikj + g(0)ijg
l
(2)k − g(0)ikgl

(2)j

)

+ · · · (B.5)

Rli
kj =

(

δi
kδ

l
j − δi

jδ
l
k

)

+
(

R
(0)li

kj + δi
jg

l
(2)k − δi

kg
l
(2)j − δl

jg
i
(2)k + δl

kg
i
(2)j

)

e−2r + · · ·

We use the inverse metric gij
(0) to raise the indices. Useful expansion for the Levi-Civita

symbol is

εi1...idr = e−drεi1...id
(0) + · · · , (B.6)

where εi1...id
(0) is defined with respect to the metric g(0)ij .
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